Lecture 12: Harish-Chandra's world...

Gabriel Dospinescu

CNRS, ENS Lyon

(\mathfrak{g}, K)-modules

(I) Let G be a connected reductive group defined over \mathbb{R} and let K be a maximal compact subgroup of $G(\mathbb{R})$. Let

$$
\mathfrak{g}=\operatorname{Lie}(G), \mathfrak{g}_{\mathbb{R}}:=\operatorname{Lie}(G(\mathbb{R})), \mathfrak{k}:=\operatorname{Lie}(K)
$$

so that $\mathfrak{g}=\mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$.

(\mathfrak{g}, K)-modules

(I) Recall that a (\mathfrak{g}, K)-module is a \mathbb{C}-vector space M (no topology!) together with \mathbb{C}-linear actions (of Lie algebras, resp. groups) of \mathfrak{g} and of K, such that

- for any $m \in M$ the space $\mathbb{C}[K] m$ is finite dimensional and affords a continuous (thus smooth) action of K.
- For $X \in \mathfrak{k}$ and $m \in M$ we have

$$
X \cdot m=\lim _{t \rightarrow 0} \frac{\exp (t X) \cdot m-m}{t}
$$

- For $X \in \mathfrak{g}, k \in K$ and $m \in M$ we have

$$
k \cdot\left(X \cdot\left(k^{-1} \cdot m\right)\right)=\operatorname{Ad}(k)(X) \cdot m .
$$

Let (\mathfrak{g}, K) - Mod be the category of (\mathfrak{g}, K)-modules.

The enveloping algebra

(I) The category of \mathfrak{g}-representations is equivalent to that of left $U(\mathfrak{g})$-modules. A classical but nontrivial result:

Theorem (Poincaré-Birkhoff-Witt) If X_{1}, \ldots, X_{n} is a \mathbb{C}-basis of \mathfrak{g}, then the monomials $X_{1}^{k_{1}} \ldots X_{n}^{k_{n}}\left(\right.$ with $\left.k_{i} \in \mathbb{Z}_{\geq 0}\right)$ form a \mathbb{C}-basis of $U(\mathfrak{g})$.

In particular $U(\mathfrak{g})$ has countable dimension over \mathbb{C}. We give next a very nice application of this observation.

Dixmier's Schur lemma

(I) Let $Z(\mathfrak{g})$ be the centre of $U(\mathfrak{g})$. We will see later on that any $D \in Z(\mathfrak{g})$ commutes with $G(\mathbb{R})$, thus acts by endomorphisms on any (\mathfrak{g}, K)-module and on V^{∞} for any $V \in \operatorname{Rep}(G(\mathbb{R}))$. The analogue of Schur's lemma in $\operatorname{Rep}(G(\mathbb{R}))$ for $(\mathfrak{g}, K)-\operatorname{Mod}$ is:

Theorem (Dixmier) If $M \in(\mathfrak{g}, K)-M o d$ is a simple object, then $\operatorname{End}_{(\mathfrak{g}, K)-\operatorname{Mod}}(M)=\mathbb{C}$. In particular $Z(\mathfrak{g})$ acts by scalars on M.

The same result (with the same proof) applies to simple $U(\mathfrak{g})$-modules.

Dixmier's Schur lemma

(I) Let T be a non scalar endomorphism. By simplicity $T-a$ is invertible for $a \in \mathbb{C}$, thus $P(T)$ is invertible for $P \in \mathbb{C}[X]$ nonzero. Thus $\mathbb{C}(X)$ embeds (as \mathbb{C}-vector space) in $\operatorname{End}(M)$ and $\operatorname{dim}_{\mathbb{C}} \operatorname{End}(M)$ is uncountable.

Dixmier's Schur lemma

(I) Let T be a non scalar endomorphism. By simplicity $T-a$ is invertible for $a \in \mathbb{C}$, thus $P(T)$ is invertible for $P \in \mathbb{C}[X]$ nonzero. Thus $\mathbb{C}(X)$ embeds (as \mathbb{C}-vector space) in $\operatorname{End}(M)$ and $\operatorname{dim}_{\mathbb{C}} \operatorname{End}(M)$ is uncountable.
(II) Let $v \in M \backslash\{0\}$, then again by simplicity $f \rightarrow f(v)$ induces an embedding

$$
\operatorname{End}(M) \subset M
$$

On the other hand $U(\mathfrak{g}) \mathbb{C}[K] v$ is a nonzero sub- (\mathfrak{g}, K)-module of M, thus equal to M. Since $U(\mathfrak{g})$ has countable dimension, so does M, contradicting the previous paragraph!

Segal's Schur lemma

(I) The next result is much more subtle.

Theorem (Segal) Let V be an irreducible unitary representation of $G(\mathbb{R})$. Then $Z(\mathfrak{g})$ acts by scalars on V^{∞}.

The subtle point is that we don't know a priori that V^{∞} is an irreducible (\mathfrak{g}, K)-module!

Segal's Schur lemma

(I) The next result is much more subtle.

Theorem (Segal) Let V be an irreducible unitary representation of $G(\mathbb{R})$. Then $Z(\mathfrak{g})$ acts by scalars on V^{∞}.

The subtle point is that we don't know a priori that V^{∞} is an irreducible (\mathfrak{g}, K)-module!
(II) Let (.,.) be the $G(\mathbb{R})$-invariant inner product on V. A simple computation shows that $(X v, w)=-(v, X w)$ for $X \in \mathfrak{g}_{\mathbb{R}}$ and $v, w \in V^{\infty}$. The map $X+i Y \in \mathfrak{g} \rightarrow-(X-i Y) \in \mathfrak{g}$ extends to a semi-linear anti-automorphism $U(\mathfrak{g}) \rightarrow U(\mathfrak{g}), D \rightarrow D^{\vee}$, preserving $Z(\mathfrak{g})$ and such that $(D v, w)=\left(v, D^{\vee} w\right)$ for $v, w \in V^{\infty}$ and $D \in U(\mathfrak{g})$.

Segal's Schur lemma

(I) Now let $D \in Z(\mathfrak{g})$ and suppose that for some $v \in V^{\infty}$ we have $D v \notin \mathbb{C} v$. We will prove below that for any $x, y \in V^{\infty}$ there is a sequence $f_{n} \in C_{c}^{\infty}(G(\mathbb{R}))$ such that $f_{n} . v \rightarrow x$ and $f_{n} D v \rightarrow y$. Then for any $z \in V^{\infty}$

$$
\begin{gathered}
(y, z)=\lim _{n \rightarrow \infty}\left(f_{n} D v, z\right)=\lim _{n \rightarrow \infty}\left(D f_{n} v, z\right)= \\
\lim _{n \rightarrow \infty}\left(f_{n} v, D^{\vee} z\right)=\left(x, D^{\vee} z\right)=(D x, z),
\end{gathered}
$$

where we used that D and f_{n} commute since $D \in Z(\mathfrak{g})$ must commute with the adjoint action of $G(\mathbb{R})$ (cf. next slides).
Since V^{∞} is dense, it follows that $y=D x$ for any
$x, y \in V^{\infty}$, a contradiction.

Segal's Schur lemma

(I) Now let $D \in Z(\mathfrak{g})$ and suppose that for some $v \in V^{\infty}$ we have $D v \notin \mathbb{C} v$. We will prove below that for any $x, y \in V^{\infty}$ there is a sequence $f_{n} \in C_{c}^{\infty}(G(\mathbb{R}))$ such that $f_{n} . v \rightarrow x$ and $f_{n} D v \rightarrow y$. Then for any $z \in V^{\infty}$

$$
\begin{aligned}
& (y, z)=\lim _{n \rightarrow \infty}\left(f_{n} D v, z\right)=\lim _{n \rightarrow \infty}\left(D f_{n} v, z\right)= \\
& \lim _{n \rightarrow \infty}\left(f_{n} v, D^{\vee} z\right)=\left(x, D^{\vee} z\right)=(D x, z),
\end{aligned}
$$

where we used that D and f_{n} commute since $D \in Z(\mathfrak{g})$ must commute with the adjoint action of $G(\mathbb{R})$ (cf. next slides).
Since V^{∞} is dense, it follows that $y=D x$ for any $x, y \in V^{\infty}$, a contradiction.
(II) Thus, to finish the proof, it suffices to prove that for any linearly independent family $v_{1}, \ldots, v_{n} \in V^{\infty}$ the set $Y:=\left\{\left(f . v_{1}, \ldots, f . v_{n}\right) \mid f \in C_{c}^{\infty}(G(\mathbb{R}))\right\}$ is dense in V^{n}.

Segal's Schur lemma

(I) Let X be the closure of Y. One easily checks that Y is $G(\mathbb{R})$-stable, thus so is X. It easily follows that the orthogonal projection $p: V^{n} \rightarrow X$ is $G(\mathbb{R})$-equivariant. But by Schur's lemma $\operatorname{End}_{G(\mathbb{R})}\left(V^{n}\right)=M_{n}(\mathbb{C})$, thus $p(x)=A x$ for some $A \in M_{n}(\mathbb{C})$. But $\left(v_{1}, \ldots, v_{n}\right) \in X$ (use a Dirac sequence $)$, so $p\left(v_{1}, \ldots, v_{n}\right)=\left(v_{1}, \ldots, v_{n}\right)$. Since the v_{i} are linearly independent over \mathbb{C}, this forces $A=I$ and $p=\mathrm{id}$, thus $X=V^{n}$ and we are done.

Application of elliptic regularity

(I) The rest of the lecture is devoted to proving that $Z(\mathfrak{g})$ has a huge influence on the representation theory of $G(\mathbb{R})$. We will need the following nontrivial consequence of the elliptic regularity theorem, which we take for granted:

Theorem Let $V \in \operatorname{Rep}(G(\mathbb{R}))$ and let $v \in H C(V)$ be a $Z(\mathfrak{g})$-finite vector. Then for any $I \in V^{*}$ the map $G(\mathbb{R}) \rightarrow \mathbb{C}, g \rightarrow I(g . v)$ is real analytic.

Admissibility

(I) For any $M \in(\mathfrak{g}, K)-M o d$ we have

$$
M=\bigoplus_{\pi \in \hat{K}} M(\pi)
$$

where $M(\pi)$ is the π-isotypic component of M, i.e. $M(\pi)=e_{\pi}(M)$, where e_{π} is the idempotent associated to π. Equivalently, $M(\pi)$ is the sum of all K-subrepresentations of M isomorphic to π.

Admissibility

(I) For any $M \in(\mathfrak{g}, K)-M o d$ we have

$$
M=\bigoplus_{\pi \in \hat{K}} M(\pi)
$$

where $M(\pi)$ is the π-isotypic component of M, i.e.
$M(\pi)=e_{\pi}(M)$, where e_{π} is the idempotent associated to π. Equivalently, $M(\pi)$ is the sum of all K-subrepresentations of M isomorphic to π.
(II) We say that M is admissible if $M(\pi)$ is finite dimensional for all $\pi \in \hat{K}$. The Harish-Chandra functor preserves admissibility
$H C: \operatorname{Rep}(G(\mathbb{R})) \rightarrow(\mathfrak{g}, K)-\operatorname{Mod}, H C(V):=V^{K-\operatorname{fin}} \cap V^{\infty}$.

Admissibility

(I) Here is a first crucial result, making the theory of admissible representations of $G(\mathbb{R})$ essentially algebraic:

Theorem (Harish-Chandra) Let $V \in \operatorname{Rep}(G(\mathbb{R})$) be an admissible representation.
a) We have $H C(V)=V^{K-f i n}$ and any $v \in H C(V)$ is $Z(\mathfrak{g})$-finite.
b) The maps $W \rightarrow H C(W)$ and $N \rightarrow \bar{N}$ give a bijection between sub-representations of V and sub-objects of $H C(V)$. In particular V is irreducible if and only if $H C(V)$ is so.

With similar arguments one proves that if V, W are admissible $G(\mathbb{R})$-representations, then any continuous linear map $f: V \rightarrow W$ which sends $H C(V)$ to $H C(W)$ and is (\mathfrak{g}, K)-equivariant is actually $G(\mathbb{R})$-equivariant,

Admissibility

(I) We start by proving that $H C(V)=V^{K-f i n}$. Since $V^{K-\mathrm{fin}}=\oplus_{\pi} V(\pi)$ (cf. lecture 2), it suffices to show that $V(\pi) \subset V^{\infty}$ for $\pi \in \hat{K}$. Since $V(\pi)$ is finite dimensional by assumption, this reduces further to the density of $V(\pi) \cap V^{\infty}$ in $V(\pi)$.

Admissibility

(I) We start by proving that $H C(V)=V^{K-f i n}$. Since $V^{K-f i n}=\oplus_{\pi} V(\pi)$ (cf. lecture 2), it suffices to show that $V(\pi) \subset V^{\infty}$ for $\pi \in \hat{K}$. Since $V(\pi)$ is finite dimensional by assumption, this reduces further to the density of $V(\pi) \cap V^{\infty}$ in $V(\pi)$.
(II) Pick $v \in V(\pi)$ and f_{n} a Dirac sequence consisting of smooth functions. Extend $e_{\pi} \in C(K)$ to $C(G(\mathbb{R}))$ and consider $e_{\pi} \cdot\left(f_{n} \cdot v\right)=\left(e_{\pi} * f_{n}\right) . v$. These vectors are in $V(\pi) \cap V^{\infty}$ and converge to $e_{\pi} . v=v$, so we are done.

Admissibility

(I) We start by proving that $H C(V)=V^{K-f i n}$. Since $V^{K-f i n}=\oplus_{\pi} V(\pi)$ (cf. lecture 2), it suffices to show that $V(\pi) \subset V^{\infty}$ for $\pi \in \hat{K}$. Since $V(\pi)$ is finite dimensional by assumption, this reduces further to the density of $V(\pi) \cap V^{\infty}$ in $V(\pi)$.
(II) Pick $v \in V(\pi)$ and f_{n} a Dirac sequence consisting of smooth functions. Extend $e_{\pi} \in C(K)$ to $C(G(\mathbb{R}))$ and consider $e_{\pi} \cdot\left(f_{n} \cdot v\right)=\left(e_{\pi} * f_{n}\right) \cdot v$. These vectors are in $V(\pi) \cap V^{\infty}$ and converge to $e_{\pi} \cdot v=v$, so we are done.
(III) Since $V(\pi)$ is finite dimensional and preserved by $Z(\mathfrak{g})$, it is clear that it consists of $Z(\mathfrak{g})$-finite vectors, thus so does $H C(V)$.

Admissibility

(I) We next show that if N is (\mathfrak{g}, K)-stable in $M:=H C(V)$, then \bar{N} is $G(\mathbb{R})$-stable. Since $G(\mathbb{R})=G(\mathbb{R})^{0} K$ by the Cartan decomposition, it suffices to check that $G(\mathbb{R})^{0} N \subset \bar{N}$.

Admissibility

(I) We next show that if N is (\mathfrak{g}, K)-stable in $M:=H C(V)$, then \bar{N} is $G(\mathbb{R})$-stable. Since $G(\mathbb{R})=G(\mathbb{R})^{0} K$ by the Cartan decomposition, it suffices to check that $G(\mathbb{R})^{0} N \subset \bar{N}$.
(II) By Hahn-Banach it suffices to check that any $I \in V^{*}$ vanishing on \bar{N} also vanishes on $G(\mathbb{R})^{0} N$. By the previous theorem for any $v \in N$ the map $f: g \rightarrow I(g v)$ is real analytic on $G(\mathbb{R})^{0}$. Its derivatives at 1 are computed in terms of the action of $U(\mathfrak{g})$ on v, and $/$ vanishes on $U(\mathfrak{g}) v$, thus all derivatives at 1 vanish and $f=0$.

Admissibility

(I) We next show that if N is (\mathfrak{g}, K)-stable in $M:=H C(V)$, then \bar{N} is $G(\mathbb{R})$-stable. Since $G(\mathbb{R})=G(\mathbb{R})^{0} K$ by the Cartan decomposition, it suffices to check that $G(\mathbb{R})^{0} N \subset \bar{N}$.
(II) By Hahn-Banach it suffices to check that any $I \in V^{*}$ vanishing on \bar{N} also vanishes on $G(\mathbb{R})^{0} N$. By the previous theorem for any $v \in N$ the map $f: g \rightarrow I(g v)$ is real analytic on $G(\mathbb{R})^{0}$. Its derivatives at 1 are computed in terms of the action of $U(\mathfrak{g})$ on v, and I vanishes on $U(\mathfrak{g}) v$, thus all derivatives at 1 vanish and $f=0$.
(III) Since $H C(W)$ is dense in W, we have $\overline{H C(W)}=W$. We still need $H C(\bar{N})=N$ for a sub-object N of $H C(V)$. By a) this reduces to $N(\pi)=\bar{N}(\pi)$ for $\pi \in \hat{K}$. But $\bar{N}(\pi)$ is contained in $V(\pi)$, thus it is finite dimensional, and clearly $N(\pi)$ is dense in $\bar{N}(\pi)$, so we win again.

The key finiteness theorem

(I) The next theorem is fundamental.

Theorem (Harish-Chandra) If $M \in(\mathfrak{g}, K)-$ Mod is finitely generated as $U(\mathfrak{g})$-module, then $M(\pi)$ is finitely generated over $Z(\mathfrak{g})$ for any $\pi \in \hat{K}$.

We will discuss the very technical proof later on, let's focus on the many and important consequences.

The key finiteness theorem

(I) A first important consequence is

Theorem $\mathrm{A}(\mathfrak{g}, K)$-module generated over $U(\mathfrak{g})$ by finitely many $Z(\mathfrak{g})$-finite vectors is admissible.

Say M is generated by v_{1}, \ldots, v_{n}, with v_{i} killed by some ideal J of finite codimension in $Z(\mathfrak{g})$. If $\pi \in \hat{K}$, then $M(\pi)$ is finitely generated over $Z(\mathfrak{g})$ (by the previous theorem) and killed by J, thus a finitely generated $Z(\mathfrak{g}) / J$-module and a finite dimensional \mathbb{C}-vector space.

Irreducibility and admissibility

(I) Here is a first important application:

Theorem Any irreducible (\mathfrak{g}, K)-module is admissible.
Say M is irreducible, let $v \in M$ nonzero and pick a basis v_{1}, \ldots, v_{d} of $\mathbb{C}[K] v$. Then v_{i} generate M as a $U(\mathfrak{g})$-module and they are $Z(\mathfrak{g})$-finite by Dixmier's theorem. So we win thanks to the previous theorem.

Irreducibility and admissibility

(I) The analogue of the previous result fails in $\operatorname{Rep}(G(\mathbb{R}))$ (counterexamples are not easy to find!), but holds if we add a unitarity hypothesis:

Theorem Any irreducible unitary $G(\mathbb{R})$-representation is admissible.

Say V is irreducible unitary and let $\pi \in \hat{K}$. Let
$v \in V^{\infty} \backslash\{0\}$. By Segal's theorem v is $Z(\mathfrak{g})$-finite. The key input is the following

Lemma Let $V \in \operatorname{Rep}(G(\mathbb{R}))$ and $v \in H C(V)$ be
$Z(\mathfrak{g})$-finite. Then $M=U(\mathfrak{g}) \mathbb{C}[K] v$ is admissible, its closure \bar{M} is the closure of $\mathbb{C}[G(\mathbb{R})] v$ and $\bar{M}(\pi)=M(\pi)$ for $\pi \in \hat{K}$.

Irreducibility and admissibility

(I) By the lemma the closure of $M=U(\mathfrak{g}) \mathbb{C}[K] v$ is V (by irreducibility of V) and $V(\pi)=\bar{M}(\pi)=M(\pi)$ is finite dimensional, so V is admissible.

Irreducibility and admissibility

(I) By the lemma the closure of $M=U(\mathfrak{g}) \mathbb{C}[K] v$ is V (by irreducibility of V) and $V(\pi)=\bar{M}(\pi)=M(\pi)$ is finite dimensional, so V is admissible.
(II) Let us prove the lemma. Let W be the closure of $\mathbb{C}[G(\mathbb{R})] v$. Clearly $M \subset W$, thus $\bar{M} \subset W$. If the inclusion is strict, by Hahn-Banach there is $I \in W^{*}$ nonzero vanishing on M. The derivatives of the real analytic function $g \rightarrow I(g v)$ vanish at 1 and we easily get a contradiction.

Irreducibility and admissibility

(I) By the lemma the closure of $M=U(\mathfrak{g}) \mathbb{C}[K] v$ is V (by irreducibility of V) and $V(\pi)=\bar{M}(\pi)=M(\pi)$ is finite dimensional, so V is admissible.
(II) Let us prove the lemma. Let W be the closure of $\mathbb{C}[G(\mathbb{R})] v$. Clearly $M \subset W$, thus $\bar{M} \subset W$. If the inclusion is strict, by Hahn-Banach there is $I \in W^{*}$ nonzero vanishing on M. The derivatives of the real analytic function $g \rightarrow I(g v)$ vanish at 1 and we easily get a contradiction.
(III) Next, by a previous theorem M is admissible. Since $M(\pi)$ is dense in $\bar{M}(\pi)$ and $M(\pi)$ is finite dimensional, we have $M(\pi)=\bar{M}(\pi)$, finishing the proof.

The harmonicity theorem

(I) Finally, we can also prove the harmonicity theorem:

Theorem (Harish-Chandra) Let $V \in \operatorname{Rep}(G(\mathbb{R}))$ and let $v \in H C(V)$ be a $Z(\mathfrak{g})$-finite vector. There is $f \in C_{c}^{\infty}(G(\mathbb{R}))$, invariant by conjugation by K and such that $v=f . v$.

The harmonicity theorem

(I) Finally, we can also prove the harmonicity theorem:

Theorem (Harish-Chandra) Let $V \in \operatorname{Rep}(G(\mathbb{R}))$ and let $v \in H C(V)$ be a $Z(\mathfrak{g})$-finite vector. There is $f \in C_{c}^{\infty}(G(\mathbb{R}))$, invariant by conjugation by K and such that $v=f . v$.
(II) Let J be the space of functions $f \in C_{c}^{\infty}(G(\mathbb{R}))$, invariant under conjugation by K. It contains a Dirac sequence, thus v is in the closure of J.v, thus it suffices to prove that J.v is finite dimensional.

The harmonicity theorem

(I) Let $M=U(\mathfrak{g}) \mathbb{C}[K] v$. By the above lemma, \bar{M} is $G(\mathbb{R})$-stable, thus also J-stable, and moreover $M=\oplus_{\pi \in \hat{K}} \bar{M}(\pi)$, with each $\bar{M}(\pi)=M(\pi)$ finite dimensional.

The harmonicity theorem

(I) Let $M=U(\mathfrak{g}) \mathbb{C}[K] v$. By the above lemma, \bar{M} is $G(\mathbb{R})$-stable, thus also J-stable, and moreover $M=\oplus_{\pi \in \hat{K}} \bar{M}(\pi)$, with each $\bar{M}(\pi)=M(\pi)$ finite dimensional.
(II) Since elements of J are invariant under conjugation by K, they preserve each $\bar{M}(\pi)$. Now $v \in M$, thus there are finitely many π_{i} such that $v \in \sum_{i} M\left(\pi_{i}\right)$ and by the previous discussion J.v $\subset \sum_{i} M\left(\pi_{i}\right)$ is finite dimensional, finishing the proof.

Proof of the finiteness theorem

(I) Recall that we want to prove

Theorem (Harish-Chandra) If $M \in(\mathfrak{g}, K)-$ Mod is finitely generated as $U(\mathfrak{g})$-module, then $M(\pi)$ is finitely generated over $Z(\mathfrak{g})$ for any $\pi \in \hat{K}$.

This needs a lot of preparation...

Filtration on $U(\mathfrak{g})$

(I) Let $U_{0}=\mathbb{C}$ and for $n \geq 1$ let

$$
U_{n}=\operatorname{Span}_{X_{1}, \ldots, X_{k} \in \mathfrak{g}, k \leq n} X_{1} \ldots X_{k}
$$

The U_{n} form an increasing sequence of finite dimensional \mathbb{C}-vector spaces with union $U(\mathfrak{g})$ and $U_{n} U_{m} \subset U_{n+m}$. This induces a filtration on $U(\mathfrak{g})$ and

$$
\operatorname{gr}(U(\mathfrak{g}))=U_{0} \oplus U_{1} / U_{0} \oplus U_{2} / U_{1} \oplus \ldots
$$

is naturally a \mathbb{C}-algebra. A simple exercise shows that this algebra is commutative, so the natural map

$$
\mathfrak{g} \rightarrow U(\mathfrak{g}) \rightarrow \operatorname{gr}(U(\mathfrak{g}))
$$

extends to a map of \mathbb{C}-algebras

$$
S(\mathfrak{g}) \rightarrow \operatorname{gr}(U(\mathfrak{g})),
$$

which can be shown (exercise) to be an isomorphism.

Study of the center

(I) Let's consider now the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$. By definition

$$
Z(\mathfrak{g})=\{D \in U(\mathfrak{g}) \mid D X=X D, \forall X \in \mathfrak{g}\}
$$

is the centralizer of \mathfrak{g}. The adjoint action of G on \mathfrak{g} extends to an action on $U(\mathfrak{g})$, preserving each U_{n} and making $U(\mathfrak{g})$ an algebraic representation of G. Since G is connected, one easily checks that

$$
Z(\mathfrak{g})=U(\mathfrak{g})^{G}
$$

and since G is reductive (thus passage to G-invariants is exact on algebraic representations) we obtain

$$
\operatorname{gr}(Z(\mathfrak{g}))=\operatorname{gr}\left(U(\mathfrak{g})^{G}\right)=\operatorname{gr}(U(\mathfrak{g}))^{G} \simeq S(\mathfrak{g})^{G}
$$

for the natural filtration on $Z(\mathfrak{g})$ induced by $U(\mathfrak{g})$.

Chevalley's theorem

(I) The algebra $S(\mathfrak{g})^{G}=S(\mathfrak{g})^{\mathfrak{g}}$ was described by Chevalley and the result is stunningly beautiful: it is a polynomial algebra in r variables, where r is the dimension of a maximal torus T in G. More precisely, let $W=N_{G}(T) / T$ be the Weyl group of the pair (G, T).

Chevalley's theorem

(I) The algebra $S(\mathfrak{g})^{G}=S(\mathfrak{g})^{\mathfrak{g}}$ was described by Chevalley and the result is stunningly beautiful: it is a polynomial algebra in r variables, where r is the dimension of a maximal torus T in G. More precisely, let $W=N_{G}(T) / T$ be the Weyl group of the pair (G, T).
(II) There is a G-equivariant isomorphism $\mathfrak{g} \simeq \mathfrak{g}^{*}$ (pick an embedding $G \subset \mathbb{G L}_{n}(\mathbb{C})$ and use the G-invariant bilinear form $(X, Y) \rightarrow \operatorname{Tr}(X Y)$ on \mathfrak{g}), so we can identify

$$
S(\mathfrak{g}) \simeq S\left(\mathfrak{g}^{*}\right) \simeq \mathbb{C}[\mathfrak{g}]
$$

in a G-equivariant way, thus $S(\mathfrak{g})^{G}$ is isomorphic to the ring of polynomial functions on \mathfrak{g} invariant under the adjoint action of G.

Chevalley's theorem

(I) There is a natural restriction map

$$
\mathbb{C}[\mathfrak{g}]^{G} \rightarrow \mathbb{C}[\mathfrak{t}]^{W}
$$

where $T=\operatorname{Lie}(T)$ and Chevalley's famous theorem is
Theorem (Chevalley's restriction theorem) The above map is an isomorphism and $\mathbb{C}[t]^{W}$ is a polynomial algebra in $\operatorname{dim} T$ generators.

Chevalley's theorem

(I) There is a natural restriction map

$$
\mathbb{C}[\mathfrak{g}]^{G} \rightarrow \mathbb{C}[t]^{W}
$$

where $T=\operatorname{Lie}(T)$ and Chevalley's famous theorem is
Theorem (Chevalley's restriction theorem) The above map is an isomorphism and $\mathbb{C}[t]^{W}$ is a polynomial algebra in $\operatorname{dim} T$ generators.
(II) The proof requires a delicate study of the finite dimensional representations of G (there are ways to avoid it, though, but still the argument is intricate), but the case $G=\mathbb{G L}_{n}(\mathbb{C})$ is an excellent exercise!

Back to our business

(I) We are finally in good shape for the proof of the theorem. Pick generators m_{1}, \ldots, m_{n} of M over $U(\mathfrak{g})$ and set $V=\sum \mathbb{C}[K] m_{i}$, then the obvious map $U(\mathfrak{g}) \otimes_{\mathbb{C}} V \rightarrow M$ descends to a surjection

$$
U(\mathfrak{g}) \otimes_{U\left(\mathfrak{e}_{\mathbb{C}}\right)} V \rightarrow M
$$

Back to our business

(I) We are finally in good shape for the proof of the theorem. Pick generators m_{1}, \ldots, m_{n} of M over $U(\mathfrak{g})$ and set $V=\sum \mathbb{C}[K] m_{i}$, then the obvious map $U(\mathfrak{g}) \otimes_{\mathbb{C}} V \rightarrow M$ descends to a surjection

$$
U(\mathfrak{g}) \otimes_{U\left(\mathfrak{e}_{\mathbb{C}}\right)} V \rightarrow M .
$$

(II) It suffices to prove that $\operatorname{Hom}_{K}\left(\pi, U(\mathfrak{g}) \otimes_{U\left(\mathfrak{F}_{\mathbb{C}}\right)} V\right)$ is finitely generated over $Z(\mathfrak{g})$. Let

$$
W=V \otimes_{\mathbb{C}} \pi^{*}, N=U(\mathfrak{g}) \otimes_{U\left(\mathfrak{t}_{\mathbb{C}}\right)} W
$$

then we need to show that N^{K} is finitely generated over $Z(\mathfrak{g})$.

Back to our business

(I) The PBW filtration on $U(\mathfrak{g})$ induces one on N, preserved by the action of K, and a simple argument shows that it suffices to prove that $\operatorname{gr}\left(N^{K}\right)$ is finitely generated over $\operatorname{gr}(Z(\mathfrak{g}))$. Since K is compact, we have $\operatorname{gr}\left(N^{K}\right) \simeq(\operatorname{gr}(N))^{K}$.

Back to our business

(I) The PBW filtration on $U(\mathfrak{g})$ induces one on N, preserved by the action of K, and a simple argument shows that it suffices to prove that $\operatorname{gr}\left(N^{K}\right)$ is finitely generated over $\operatorname{gr}(Z(\mathfrak{g}))$. Since K is compact, we have $\operatorname{gr}\left(N^{K}\right) \simeq(\operatorname{gr}(N))^{K}$.
(II) Next, the surjection

$$
U(\mathfrak{g}) \otimes_{\mathbb{C}} W \rightarrow N
$$

induces a surjection

$$
S(\mathfrak{g}) \otimes_{\mathbb{C}} W \rightarrow \operatorname{gr}(N)
$$

which factors trivially

$$
S(\mathfrak{g}) / \mathfrak{k}_{\mathbb{C}} S(\mathfrak{g}) \otimes_{\mathbb{C}} W \rightarrow \operatorname{gr}(N)
$$

Back to our business

(I) The PBW filtration on $U(\mathfrak{g})$ induces one on N, preserved by the action of K, and a simple argument shows that it suffices to prove that $\operatorname{gr}\left(N^{K}\right)$ is finitely generated over $\operatorname{gr}(Z(\mathfrak{g}))$. Since K is compact, we have $\operatorname{gr}\left(N^{K}\right) \simeq(\operatorname{gr}(N))^{K}$.
(II) Next, the surjection

$$
U(\mathfrak{g}) \otimes_{\mathbb{C}} W \rightarrow N
$$

induces a surjection

$$
S(\mathfrak{g}) \otimes_{\mathbb{C}} W \rightarrow \operatorname{gr}(N)
$$

which factors trivially

$$
S(\mathfrak{g}) / \mathfrak{k}_{\mathbb{C}} S(\mathfrak{g}) \otimes_{\mathbb{C}} W \rightarrow \operatorname{gr}(N)
$$

(III) Thus it suffices to prove that $\left(S(\mathfrak{g}) / \mathfrak{k}_{\mathbb{C}} S(\mathfrak{g}) \otimes_{\mathbb{C}} W\right)^{K}$ is finitely generated over $\operatorname{gr}(Z(\mathfrak{g}))$.

Back to our business

(I) By the Cartan-Chevalley-Mostow theorem WLOG $G(\mathbb{R})$ is self-adjoint, i.e. stable under transpose, and

$$
K=G(\mathbb{R}) \cap U(n)
$$

The Cartan involution $\theta: G(\mathbb{R}) \rightarrow G(\mathbb{R}), g \rightarrow\left(g^{T}\right)^{-1}$ induces a decomposition

$$
\begin{gathered}
\mathfrak{g}_{\mathbb{R}}:=\operatorname{Lie}(G(\mathbb{R}))=\mathfrak{k} \oplus \mathfrak{p}, \\
\mathfrak{k}=\mathfrak{g}_{\mathbb{R}}^{\theta=1}, \mathfrak{p}=\mathfrak{g}_{\mathbb{R}}^{\theta=-1} .
\end{gathered}
$$

Back to our business

(I) The decomposition $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$ induces an isomorphism

$$
S(\mathfrak{g}) / \mathfrak{k}_{\mathbb{C}} S(\mathfrak{g}) \simeq S\left(\mathfrak{p}_{\mathbb{C}}\right)
$$

Back to our business

(I) The decomposition $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$ induces an isomorphism

$$
S(\mathfrak{g}) / \mathfrak{k}_{\mathbb{C}} S(\mathfrak{g}) \simeq S\left(\mathfrak{p}_{\mathbb{C}}\right)
$$

(II) Thus it suffices to prove that $\left(S\left(p_{\mathbb{C}}\right) \otimes_{\mathbb{C}} W\right)^{K}$ is finitely generated over $S(\mathfrak{g})^{G}$.

Back to our business

(I) The decomposition $\mathfrak{g}=\mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$ induces an isomorphism

$$
S(\mathfrak{g}) / \mathfrak{k}_{\mathbb{C}} S(\mathfrak{g}) \simeq S\left(\mathfrak{p}_{\mathbb{C}}\right)
$$

(II) Thus it suffices to prove that $\left(S\left(\mathfrak{p}_{\mathbb{C}}\right) \otimes_{\mathbb{C}} W\right)^{K}$ is finitely generated over $S(\mathfrak{g})^{G}$.
(III) Let \mathfrak{a} be a maximal commutative subspace of \mathfrak{p}.

Back to our business

(I) We need the following tricky result (easy for $\mathbb{G}_{\mathbb{L}_{n}}$):

Theorem We have $\mathfrak{p}=\cup_{k \in K} \operatorname{Ad}(k)(\mathfrak{a})$.

Back to our business

(I) We need the following tricky result (easy for $\mathbb{G}_{\mathbb{L}_{n}}$):

Theorem We have $\mathfrak{p}=\cup_{k \in K} \operatorname{Ad}(k)(\mathfrak{a})$.
(II) Keep identifying elements of the symmetric algebra of $\mathfrak{g}, \mathfrak{p}_{\mathbb{C}}, \ldots$ with polynomial functions on $\mathfrak{g}, \mathfrak{p}_{\mathbb{C}}, \ldots$ The theorem implies that that restriction to $\mathfrak{a}_{\mathbb{C}}$ induces an embedding

$$
\left(S\left(\mathfrak{p}_{\mathbb{C}}\right) \otimes_{\mathbb{C}} W\right)^{K} \subset \mathbb{C}\left[\mathfrak{a}_{\mathbb{C}}\right] \otimes_{\mathbb{C}} W
$$

so (since $\mathbb{C}[\mathfrak{g}]^{G}$ is noetherian) it suffices to prove that the restriction map $\mathbb{C}[\mathfrak{g}]^{G} \rightarrow \mathbb{C}\left[\mathfrak{a}_{\mathbb{C}}\right]$ is finite.

Back to our business

(I) But one can check that $\mathfrak{a}_{\mathbb{C}}$ is the Lie algebra of a maximal torus in G, so the result follows from Chevalley's restriction theorem.

Harish-Chandra's isomorphism

(I) Harish-Chandra used the previous theorem to prove his famous theorem describing $Z(\mathfrak{g})$. To state it, pick a Borel subgroup B containing T and let N be its unipotent radical. Let $\mathfrak{n}=\operatorname{Lie}(N)$ and $\mathfrak{b}=\operatorname{Lie}(B)$ and consider

$$
M=U(\mathfrak{g}) / U(\mathfrak{g}) \mathfrak{n} \simeq U(\mathfrak{g})
$$

There is a natural embedding $U(\mathfrak{t}) \subset M$ and $U(\mathfrak{t}) \simeq S(\mathfrak{t})$ since T is commutative. The proof of the next result is not very hard:

Theorem For any $a \in Z(\mathfrak{g})$ there is a unique $x \in U(\mathfrak{t})$ such that the image of a in M is the same as the image of x. Sending a to x yields a homomorphism of algebras

$$
\varphi: Z(\mathfrak{g}) \rightarrow U(\mathfrak{t})
$$

Harish-Chandra's isomorphism

(I) Let $\rho \in \frac{1}{2} X(T)$ be half the sum of the positive roots attached to (G, B, T), i.e. the roots appearing in \mathfrak{n}. We define a new action of W on t^{*} by

$$
w \cdot \lambda=w(\lambda+\rho)-\rho .
$$

This induces an action of W on $S(\mathfrak{t}) \simeq \mathbb{C}\left[\mathfrak{t}^{*}\right]$.
Theorem (Harish-Chandra's isomorphism) The map $Z(\mathfrak{g}) \rightarrow S(\mathfrak{t})$ in the previous theorem induces an isomorphism

$$
Z(\mathfrak{g}) \simeq S(\mathfrak{t})^{W}
$$

and this is a polynomial algebra in $\operatorname{dim} T$ generators.

Harish-Chandra's isomorphism

(I) The hard part in the proof is showing that the image of φ is invariant under W, which is done by some explicit computations with Verma modules, i.e. quotients of the form $M_{\lambda}=M \otimes_{U(\mathfrak{t})} \mathbb{C}$ for $\lambda: \mathfrak{t} \rightarrow \mathbb{C}$. Once this is achieved, one checks without much pain that φ induces on the associated graded rings precisely Chevalley's restriction isomorphism.

The proof of the finiteness theorem: the finale

(I) Let now G be a connected reductive group over \mathbb{Q} and let Γ be an arithmetic subgroup of $G(\mathbb{Q})$. We want to prove that for any ideal J of finite codimension in $Z(\mathfrak{g})$ and any $\pi_{1}, \ldots, \pi_{n} \in \hat{K}$ the space of $f \in \mathscr{A}(G, \Gamma)$ of types J and π_{1}, \ldots, π_{n} is finite dimensional. We proved this last time for the cuspidal subspace, and also explained a reduction to the case $A_{G}=1\left(A_{G}\right.$ being the split component of $\left.G\right)$.

The proof of the finiteness theorem: the finale

(I) Let now G be a connected reductive group over \mathbb{Q} and let Γ be an arithmetic subgroup of $G(\mathbb{Q})$. We want to prove that for any ideal J of finite codimension in $Z(\mathfrak{g})$ and any $\pi_{1}, \ldots, \pi_{n} \in \hat{K}$ the space of $f \in \mathscr{A}(G, \Gamma)$ of types J and π_{1}, \ldots, π_{n} is finite dimensional. We proved this last time for the cuspidal subspace, and also explained a reduction to the case $A_{G}=1\left(A_{G}\right.$ being the split component of $\left.G\right)$.
(II) To prove the result in general we induct on the \mathbb{Q}-rank of G, i.e. the dimension of the maximal \mathbb{Q}-split tori in G. If this is 0 , then G is anisotropic, so all forms are cuspidal and we are done. Say this is >0. If there are no proper \mathbb{Q}-parabolics in G we are done by the same argument, so suppose that this is not the case. We saw last time that the set of \mathbb{Q}-parabolics up to Γ-conjugacy is finite, pick representatives P_{1}, \ldots, P_{r}.

The proof of the finiteness theorem: the finale

(I) Let $f \in \mathscr{A}(G, \Gamma)$ and consider $f_{i}=f_{P_{i}}$, the constant term along each P_{i}. By properties of the constant term, the kernel of the map $\varphi: f \rightarrow\left(f_{P_{1}}, \ldots, f_{P_{r}}\right)$ consists of cusp forms, so the restriction of the kernel to forms of type $J, \pi_{1}, \ldots, \pi_{n}$ is finite dimensional (the main result of the last lecture). So it suffices to prove that the image of $\mathscr{A}(G, \Gamma)\left[J, \pi_{1}, \ldots, \pi_{r}\right]$ is finite dimensional. Let $L_{i}=N_{i} / P_{i}$ be the Levi quotient of P_{i}, with N_{i} the unipotent radical of P_{i}. We will see below that f_{i} are automorphic forms on L_{i} for the arithmetic subgroups Γ_{i} (image of $P_{i} \cap \Gamma$ in L_{i}), with K and $Z(\mathfrak{g})$-types determined by J and the π_{i}. By the inductive hypothesis (the L_{i} have smaller \mathbb{Q}-rank than G) $\varphi\left(\mathscr{A}(G, \Gamma)\left[J, \pi_{1}, \ldots, \pi_{r}\right]\right)$ is finite dimensional and so we win!

The proof of the finiteness theorem: the finale

(I) We are thus reduced to the following statement: for a proper \mathbb{Q}-parabolic P with unipotent radical N and Levi quotient $L=N \backslash P$, for any $f \in \mathscr{A}(G, \Gamma)\left[J, \pi_{1}, \ldots, \pi_{r}\right]$ the constant term f_{P} defines an automorphic form on L with respect to Γ_{L} (image of $P \cap \Gamma$) of K and $Z(\mathfrak{g})$-types specified by J and the π_{i}.

The proof of the finiteness theorem: the finale

(I) We are thus reduced to the following statement: for a proper \mathbb{Q}-parabolic P with unipotent radical N and Levi quotient $L=N \backslash P$, for any $f \in \mathscr{A}(G, \Gamma)\left[J, \pi_{1}, \ldots, \pi_{r}\right]$ the constant term f_{P} defines an automorphic form on L with respect to Γ_{L} (image of $P \cap \Gamma$) of K and $Z(\mathfrak{g})$-types specified by J and the π_{i}.
(II) First, by design

$$
f_{P}(g)=\int_{N(\mathbb{R}) \cap\lceil\backslash N(\mathbb{R})} f(n g) d n
$$

is left $N(\mathbb{R})$-invariant and also left $P \cap \Gamma$-invariant, thus it defines a function on $L(\mathbb{R}) \simeq N(\mathbb{R}) / P(\mathbb{R})$ which is left $\Gamma_{L \text {-invariant, obviously smooth and of moderate growth. }}^{\text {s }}$

The proof of the finiteness theorem: the finale

(I) Let M_{P}, A_{P}, \ldots the factors in the Langlands decomposition of $P(\mathbb{R})$. Then $K \cap M_{P}$ is a maximal compact subgroup of $P(\mathbb{R})$ and its image K_{L} in $L(\mathbb{R})$ is a maximal compact subgroup of $L(\mathbb{R})$. Using this it is clear that f_{P} is K_{L}-finite, of type specified by the π_{i}.

The proof of the finiteness theorem: the finale

(I) Let M_{P}, A_{P}, \ldots the factors in the Langlands decomposition of $P(\mathbb{R})$. Then $K \cap M_{P}$ is a maximal compact subgroup of $P(\mathbb{R})$ and its image K_{L} in $L(\mathbb{R})$ is a maximal compact subgroup of $L(\mathbb{R})$. Using this it is clear that f_{P} is K_{L}-finite, of type specified by the π_{i}.
(II) The hard part is proving that f_{P} is $Z(\mathfrak{l})$-finite, of type specified by J. The same argument as in the construction of the Harish-Chandra isomorphism yields a homomorphism

$$
\varphi_{\mathfrak{l}}: Z(\mathfrak{g}) \rightarrow Z(\mathfrak{l})
$$

such that $D-\varphi_{\mathfrak{l}}(D) \in U(\mathfrak{g}) \mathfrak{n}$ for $D \in Z(\mathfrak{g})$.

The proof of the finiteness theorem: the finale

(I) Since f_{P} is left $N(\mathbb{R})$-invariant, it is killed by \mathfrak{n} and thus $\varphi_{\mathfrak{l}}(J) Z(\mathfrak{l})$ kills f_{P}. It suffices to show that this ideal has finite codimension in $Z(\mathfrak{l})$ and for this it suffices to show that φ_{l} is finite. Again, passing to graded pieces it suffices to check that $S(\mathfrak{g})^{G} \rightarrow S(\mathfrak{l})^{L}$ is finite. With the usual identification $\mathfrak{g} \simeq \mathfrak{g}^{*}$, this is just the restriction map. The result follows then easily from the Chevalley restriction theorem.

