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(g,K )-modules

(I) Let G be a connected reductive group defined over R and let
K be a maximal compact subgroup of G (R). Let

g = Lie(G ), gR := Lie(G (R)), k := Lie(K ),

so that g = gR ⊗R C.



(g,K )-modules

(I) Recall that a (g,K )-module is a C-vector space M (no
topology!) together with C-linear actions (of Lie algebras,
resp. groups) of g and of K , such that

• for any m ∈ M the space C[K ]m is finite dimensional and
affords a continuous (thus smooth) action of K .

• For X ∈ k and m ∈ M we have

X .m = lim
t→0

exp(tX ).m −m

t
.

• For X ∈ g, k ∈ K and m ∈ M we have

k .(X .(k−1.m)) = Ad(k)(X ).m.

Let (g,K )−Mod be the category of (g,K )-modules.



The enveloping algebra

(I) The category of g-representations is equivalent to that of left
U(g)-modules. A classical but nontrivial result:

Theorem (Poincaré-Birkhoff-Witt) If X1, ...,Xn is a
C-basis of g, then the monomials X k1

1 ...X kn
n (with ki ∈ Z≥0)

form a C-basis of U(g).

In particular U(g) has countable dimension over C. We give
next a very nice application of this observation.



Dixmier’s Schur lemma

(I) Let Z (g) be the centre of U(g). We will see later on that
any D ∈ Z (g) commutes with G (R), thus acts by
endomorphisms on any (g,K )-module and on V∞ for any
V ∈ Rep(G (R)). The analogue of Schur’s lemma in
Rep(G (R)) for (g,K )−Mod is:

Theorem (Dixmier) If M ∈ (g,K )−Mod is a simple
object, then End(g,K)−Mod(M) = C. In particular Z (g) acts
by scalars on M.

The same result (with the same proof) applies to simple
U(g)-modules.



Dixmier’s Schur lemma

(I) Let T be a non scalar endomorphism. By simplicity T − a is
invertible for a ∈ C, thus P(T ) is invertible for P ∈ C[X ]
nonzero. Thus C(X ) embeds (as C-vector space) in End(M)
and dimC End(M) is uncountable.

(II) Let v ∈ M K {0}, then again by simplicity f → f (v) induces
an embedding

End(M) ⊂ M.

On the other hand U(g)C[K ]v is a nonzero
sub-(g,K )-module of M, thus equal to M. Since U(g) has
countable dimension, so does M, contradicting the previous
paragraph!
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Segal’s Schur lemma

(I) The next result is much more subtle.

Theorem (Segal) Let V be an irreducible unitary
representation of G (R). Then Z (g) acts by scalars on V∞.

The subtle point is that we don’t know a priori that V∞ is
an irreducible (g,K )-module!

(II) Let (., .) be the G (R)-invariant inner product on V . A simple
computation shows that (Xv ,w) = −(v ,Xw) for X ∈ gR
and v ,w ∈ V∞. The map X + iY ∈ g→ −(X − iY ) ∈ g
extends to a semi-linear anti-automorphism
U(g)→ U(g),D → D∨, preserving Z (g) and such that
(Dv ,w) = (v ,D∨w) for v ,w ∈ V∞ and D ∈ U(g).
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Segal’s Schur lemma

(I) Now let D ∈ Z (g) and suppose that for some v ∈ V∞ we
have Dv /∈ Cv . We will prove below that for any x , y ∈ V∞

there is a sequence fn ∈ C∞c (G (R)) such that fn.v → x and
fnDv → y . Then for any z ∈ V∞

(y , z) = lim
n→∞

(fnDv , z) = lim
n→∞

(Dfnv , z) =

lim
n→∞

(fnv ,D
∨z) = (x ,D∨z) = (Dx , z),

where we used that D and fn commute since D ∈ Z (g) must
commute with the adjoint action of G (R) (cf. next slides).
Since V∞ is dense, it follows that y = Dx for any
x , y ∈ V∞, a contradiction.

(II) Thus, to finish the proof, it suffices to prove that for any
linearly independent family v1, ..., vn ∈ V∞ the set
Y := {(f .v1, ..., f .vn)| f ∈ C∞c (G (R))} is dense in V n.
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Segal’s Schur lemma

(I) Let X be the closure of Y . One easily checks that Y is
G (R)-stable, thus so is X . It easily follows that the
orthogonal projection p : V n → X is G (R)-equivariant. But
by Schur’s lemma EndG(R)(V n) = Mn(C), thus p(x) = Ax
for some A ∈ Mn(C). But (v1, ..., vn) ∈ X (use a Dirac
sequence), so p(v1, ..., vn) = (v1, ..., vn). Since the vi are
linearly independent over C, this forces A = I and p = id,
thus X = V n and we are done.



Application of elliptic regularity

(I) The rest of the lecture is devoted to proving that Z (g) has a
huge influence on the representation theory of G (R). We will
need the following nontrivial consequence of the elliptic
regularity theorem, which we take for granted:

Theorem Let V ∈ Rep(G (R)) and let v ∈ HC (V ) be a
Z (g)-finite vector. Then for any l ∈ V ∗ the map
G (R)→ C, g → l(g .v) is real analytic.



Admissibility

(I) For any M ∈ (g,K )−Mod we have

M =
⊕
π∈K̂

M(π),

where M(π) is the π-isotypic component of M, i.e.
M(π) = eπ(M), where eπ is the idempotent associated to π.
Equivalently, M(π) is the sum of all K -subrepresentations of
M isomorphic to π.

(II) We say that M is admissible if M(π) is finite dimensional
for all π ∈ K̂ . The Harish-Chandra functor preserves
admissibility

HC : Rep(G (R))→ (g,K )−Mod , HC (V ) := VK−fin∩V∞.
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Admissibility
(I) Here is a first crucial result, making the theory of admissible

representations of G (R) essentially algebraic:

Theorem (Harish-Chandra) Let V ∈ Rep(G (R)) be an
admissible representation.

a) We have HC (V ) = VK−fin and any v ∈ HC (V ) is
Z (g)-finite.

b) The maps W → HC (W ) and N → N̄ give a bijection
between sub-representations of V and sub-objects of HC (V ).
In particular V is irreducible if and only if HC (V ) is so.

With similar arguments one proves that if V ,W are
admissible G (R)-representations, then any continuous linear
map f : V →W which sends HC (V ) to HC (W ) and is
(g,K )-equivariant is actually G (R)-equivariant.



Admissibility

(I) We start by proving that HC (V ) = VK−fin. Since
VK−fin = ⊕πV (π) (cf. lecture 2), it suffices to show that
V (π) ⊂ V∞ for π ∈ K̂ . Since V (π) is finite dimensional by
assumption, this reduces further to the density of
V (π) ∩ V∞ in V (π).

(II) Pick v ∈ V (π) and fn a Dirac sequence consisting of smooth
functions. Extend eπ ∈ C (K ) to C (G (R)) and consider
eπ.(fn.v) = (eπ ∗ fn).v . These vectors are in V (π) ∩ V∞ and
converge to eπ.v = v , so we are done.

(III) Since V (π) is finite dimensional and preserved by Z (g), it is
clear that it consists of Z (g)-finite vectors, thus so does
HC (V ).
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Admissibility

(I) We next show that if N is (g,K )-stable in M := HC (V ),
then N̄ is G (R)-stable. Since G (R) = G (R)0K by the Cartan
decomposition, it suffices to check that G (R)0N ⊂ N̄.

(II) By Hahn-Banach it suffices to check that any l ∈ V ∗

vanishing on N̄ also vanishes on G (R)0N. By the previous
theorem for any v ∈ N the map f : g → l(gv) is real analytic
on G (R)0. Its derivatives at 1 are computed in terms of the
action of U(g) on v , and l vanishes on U(g)v , thus all
derivatives at 1 vanish and f = 0.

(III) Since HC (W ) is dense in W , we have HC (W ) = W . We
still need HC (N̄) = N for a sub-object N of HC (V ). By a)
this reduces to N(π) = N̄(π) for π ∈ K̂ . But N̄(π) is
contained in V (π), thus it is finite dimensional, and clearly
N(π) is dense in N̄(π), so we win again.
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The key finiteness theorem

(I) The next theorem is fundamental.

Theorem (Harish-Chandra) If M ∈ (g,K )−Mod is finitely
generated as U(g)-module, then M(π) is finitely generated
over Z (g) for any π ∈ K̂ .

We will discuss the very technical proof later on, let’s focus
on the many and important consequences.



The key finiteness theorem

(I) A first important consequence is

Theorem A (g,K )-module generated over U(g) by finitely
many Z (g)-finite vectors is admissible.

Say M is generated by v1, ..., vn, with vi killed by some ideal
J of finite codimension in Z (g). If π ∈ K̂ , then M(π) is
finitely generated over Z (g) (by the previous theorem) and
killed by J, thus a finitely generated Z (g)/J-module and a
finite dimensional C-vector space.



Irreducibility and admissibility

(I) Here is a first important application:

Theorem Any irreducible (g,K )-module is admissible.

Say M is irreducible, let v ∈ M nonzero and pick a basis
v1, ..., vd of C[K ]v . Then vi generate M as a U(g)-module
and they are Z (g)-finite by Dixmier’s theorem. So we win
thanks to the previous theorem.



Irreducibility and admissibility

(I) The analogue of the previous result fails in Rep(G (R))
(counterexamples are not easy to find!), but holds if we add
a unitarity hypothesis:

Theorem Any irreducible unitary G (R)-representation is
admissible.

Say V is irreducible unitary and let π ∈ K̂ . Let
v ∈ V∞ K {0}. By Segal’s theorem v is Z (g)-finite. The key
input is the following

Lemma Let V ∈ Rep(G (R)) and v ∈ HC (V ) be
Z (g)-finite. Then M = U(g)C[K ]v is admissible, its closure
M̄ is the closure of C[G (R)]v and M̄(π) = M(π) for π ∈ K̂ .



Irreducibility and admissibility

(I) By the lemma the closure of M = U(g)C[K ]v is V (by
irreducibility of V ) and V (π) = M̄(π) = M(π) is finite
dimensional, so V is admissible.

(II) Let us prove the lemma. Let W be the closure of C[G (R)]v .
Clearly M ⊂W , thus M̄ ⊂W . If the inclusion is strict, by
Hahn-Banach there is l ∈W ∗ nonzero vanishing on M. The
derivatives of the real analytic function g → l(gv) vanish at
1 and we easily get a contradiction.

(III) Next, by a previous theorem M is admissible. Since M(π) is
dense in M̄(π) and M(π) is finite dimensional, we have
M(π) = M̄(π), finishing the proof.
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The harmonicity theorem

(I) Finally, we can also prove the harmonicity theorem:

Theorem (Harish-Chandra)
Let V ∈ Rep(G (R)) and let v ∈ HC (V ) be a Z (g)-finite
vector. There is f ∈ C∞c (G (R)), invariant by conjugation by
K and such that v = f .v .

(II) Let J be the space of functions f ∈ C∞c (G (R)), invariant
under conjugation by K . It contains a Dirac sequence, thus
v is in the closure of J.v , thus it suffices to prove that J.v is
finite dimensional.
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The harmonicity theorem

(I) Let M = U(g)C[K ]v . By the above lemma, M̄ is
G (R)-stable, thus also J-stable, and moreover
M = ⊕π∈K̂ M̄(π), with each M̄(π) = M(π) finite
dimensional.

(II) Since elements of J are invariant under conjugation by K ,
they preserve each M̄(π). Now v ∈ M, thus there are finitely
many πi such that v ∈

∑
i M(πi ) and by the previous

discussion J.v ⊂
∑

i M(πi ) is finite dimensional, finishing the
proof.
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Proof of the finiteness theorem

(I) Recall that we want to prove

Theorem (Harish-Chandra) If M ∈ (g,K )−Mod is finitely
generated as U(g)-module, then M(π) is finitely generated
over Z (g) for any π ∈ K̂ .

This needs a lot of preparation...



Filtration on U(g)

(I) Let U0 = C and for n ≥ 1 let

Un = SpanX1,...,Xk∈g,k≤nX1...Xk .

The Un form an increasing sequence of finite dimensional
C-vector spaces with union U(g) and UnUm ⊂ Un+m. This
induces a filtration on U(g) and

gr(U(g)) = U0 ⊕ U1/U0 ⊕ U2/U1 ⊕ ...

is naturally a C-algebra. A simple exercise shows that this
algebra is commutative, so the natural map

g→ U(g)→ gr(U(g))

extends to a map of C-algebras

S(g)→ gr(U(g)),

which can be shown (exercise) to be an isomorphism.



Study of the center

(I) Let’s consider now the center Z (g) of U(g). By definition

Z (g) = {D ∈ U(g)| DX = XD, ∀X ∈ g}

is the centralizer of g. The adjoint action of G on g extends
to an action on U(g), preserving each Un and making U(g)
an algebraic representation of G . Since G is connected, one
easily checks that

Z (g) = U(g)G

and since G is reductive (thus passage to G -invariants is
exact on algebraic representations) we obtain

gr(Z (g)) = gr(U(g)G ) = gr(U(g))G ' S(g)G ,

for the natural filtration on Z (g) induced by U(g).



Chevalley’s theorem

(I) The algebra S(g)G = S(g)g was described by Chevalley and
the result is stunningly beautiful: it is a polynomial algebra
in r variables, where r is the dimension of a maximal torus T
in G . More precisely, let W = NG (T )/T be the Weyl group
of the pair (G ,T ).

(II) There is a G -equivariant isomorphism g ' g∗ (pick an
embedding G ⊂ GLn(C) and use the G -invariant bilinear
form (X ,Y )→ Tr(XY ) on g), so we can identify

S(g) ' S(g∗) ' C[g]

in a G -equivariant way, thus S(g)G is isomorphic to the ring
of polynomial functions on g invariant under the adjoint
action of G .
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Chevalley’s theorem

(I) There is a natural restriction map

C[g]G → C[t]W ,

where T = Lie(T ) and Chevalley’s famous theorem is

Theorem (Chevalley’s restriction theorem) The above
map is an isomorphism and C[t]W is a polynomial algebra in
dimT generators.

(II) The proof requires a delicate study of the finite dimensional
representations of G (there are ways to avoid it, though, but
still the argument is intricate), but the case G = GLn(C) is
an excellent exercise!
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Back to our business

(I) We are finally in good shape for the proof of the theorem.
Pick generators m1, ...,mn of M over U(g) and set
V =

∑
C[K ]mi , then the obvious map U(g)⊗C V → M

descends to a surjection

U(g)⊗U(kC) V → M.

(II) It suffices to prove that HomK (π,U(g)⊗U(kC) V ) is finitely
generated over Z (g). Let

W = V ⊗C π
∗, N = U(g)⊗U(kC) W ,

then we need to show that NK is finitely generated over
Z (g).
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Back to our business

(I) The PBW filtration on U(g) induces one on N, preserved by
the action of K , and a simple argument shows that it suffices
to prove that gr(NK ) is finitely generated over gr(Z (g)).
Since K is compact, we have gr(NK ) ' (gr(N))K .

(II) Next, the surjection

U(g)⊗C W → N

induces a surjection

S(g)⊗C W → gr(N),

which factors trivially

S(g)/kCS(g)⊗C W → gr(N).

(III) Thus it suffices to prove that (S(g)/kCS(g)⊗C W )K is
finitely generated over gr(Z (g)).
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(III) Thus it suffices to prove that (S(g)/kCS(g)⊗C W )K is
finitely generated over gr(Z (g)).



Back to our business

(I) By the Cartan-Chevalley-Mostow theorem WLOG G (R) is
self-adjoint, i.e. stable under transpose, and

K = G (R) ∩ U(n).

The Cartan involution θ : G (R)→ G (R), g → (gT )−1

induces a decomposition

gR := Lie(G (R)) = k⊕ p,

k = gθ=1
R , p = gθ=−1

R .



Back to our business

(I) The decomposition g = kC ⊕ pC induces an isomorphism

S(g)/kCS(g) ' S(pC).

(II) Thus it suffices to prove that (S(pC)⊗C W )K is finitely
generated over S(g)G .

(III) Let a be a maximal commutative subspace of p.
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(II) Thus it suffices to prove that (S(pC)⊗C W )K is finitely
generated over S(g)G .

(III) Let a be a maximal commutative subspace of p.



Back to our business

(I) We need the following tricky result (easy for GLn):

Theorem We have p = ∪k∈KAd(k)(a).

(II) Keep identifying elements of the symmetric algebra of
g, pC, ... with polynomial functions on g, pC, .... The theorem
implies that that restriction to aC induces an embedding

(S(pC)⊗C W )K ⊂ C[aC]⊗C W ,

so (since C[g]G is noetherian) it suffices to prove that the
restriction map C[g]G → C[aC] is finite.
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g, pC, ... with polynomial functions on g, pC, .... The theorem
implies that that restriction to aC induces an embedding

(S(pC)⊗C W )K ⊂ C[aC]⊗C W ,

so (since C[g]G is noetherian) it suffices to prove that the
restriction map C[g]G → C[aC] is finite.



Back to our business

(I) But one can check that aC is the Lie algebra of a maximal
torus in G , so the result follows from Chevalley’s restriction
theorem.



Harish-Chandra’s isomorphism

(I) Harish-Chandra used the previous theorem to prove his
famous theorem describing Z (g). To state it, pick a Borel
subgroup B containing T and let N be its unipotent radical.
Let n = Lie(N) and b = Lie(B) and consider

M = U(g)/U(g)n ' U(g).

There is a natural embedding U(t) ⊂ M and U(t) ' S(t)
since T is commutative. The proof of the next result is not
very hard:

Theorem For any a ∈ Z (g) there is a unique x ∈ U(t) such
that the image of a in M is the same as the image of x .
Sending a to x yields a homomorphism of algebras

ϕ : Z (g)→ U(t).



Harish-Chandra’s isomorphism

(I) Let ρ ∈ 1
2X (T ) be half the sum of the positive roots

attached to (G ,B,T ), i.e. the roots appearing in n. We
define a new action of W on t∗ by

w •λ = w(λ+ ρ)− ρ.

This induces an action of W on S(t) ' C[t∗].

Theorem (Harish-Chandra’s isomorphism) The map
Z (g)→ S(t) in the previous theorem induces an isomorphism

Z (g) ' S(t)W

and this is a polynomial algebra in dimT generators.



Harish-Chandra’s isomorphism

(I) The hard part in the proof is showing that the image of ϕ is
invariant under W , which is done by some explicit
computations with Verma modules, i.e. quotients of the
form Mλ = M ⊗U(t) C for λ : t→ C. Once this is achieved,
one checks without much pain that ϕ induces on the
associated graded rings precisely Chevalley’s restriction
isomorphism.



The proof of the finiteness theorem: the finale

(I) Let now G be a connected reductive group over Q and let Γ
be an arithmetic subgroup of G (Q). We want to prove that
for any ideal J of finite codimension in Z (g) and any
π1, ..., πn ∈ K̂ the space of f ∈ A (G , Γ) of types J and
π1, ..., πn is finite dimensional. We proved this last time for
the cuspidal subspace, and also explained a reduction to the
case AG = 1 (AG being the split component of G ).

(II) To prove the result in general we induct on the Q-rank of G ,
i.e. the dimension of the maximal Q-split tori in G . If this is
0, then G is anisotropic, so all forms are cuspidal and we are
done. Say this is > 0. If there are no proper Q-parabolics in
G we are done by the same argument, so suppose that this is
not the case. We saw last time that the set of Q-parabolics
up to Γ-conjugacy is finite, pick representatives P1, ...,Pr .
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G we are done by the same argument, so suppose that this is
not the case. We saw last time that the set of Q-parabolics
up to Γ-conjugacy is finite, pick representatives P1, ...,Pr .



The proof of the finiteness theorem: the finale

(I) Let f ∈ A (G , Γ) and consider fi = fPi
, the constant term

along each Pi . By properties of the constant term, the kernel
of the map ϕ : f → (fP1 , ..., fPr ) consists of cusp forms, so
the restriction of the kernel to forms of type J, π1, ..., πn is
finite dimensional (the main result of the last lecture). So it
suffices to prove that the image of A (G , Γ)[J, π1, ..., πr ] is
finite dimensional. Let Li = Ni/Pi be the Levi quotient of
Pi , with Ni the unipotent radical of Pi . We will see below
that fi are automorphic forms on Li for the arithmetic
subgroups Γi (image of Pi ∩ Γ in Li ), with K and Z (g)-types
determined by J and the πi . By the inductive hypothesis
(the Li have smaller Q-rank than G )
ϕ(A (G , Γ)[J, π1, ..., πr ]) is finite dimensional and so we win!



The proof of the finiteness theorem: the finale

(I) We are thus reduced to the following statement: for a proper
Q-parabolic P with unipotent radical N and Levi quotient
L = N\P, for any f ∈ A (G , Γ)[J, π1, ..., πr ] the constant
term fP defines an automorphic form on L with respect to ΓL

(image of P ∩ Γ) of K and Z (g)-types specified by J and the
πi .

(II) First, by design

fP(g) =

∫
N(R)∩Γ\N(R)

f (ng)dn

is left N(R)-invariant and also left P ∩ Γ-invariant, thus it
defines a function on L(R) ' N(R)/P(R) which is left
ΓL-invariant, obviously smooth and of moderate growth.
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ΓL-invariant, obviously smooth and of moderate growth.



The proof of the finiteness theorem: the finale

(I) Let MP ,AP , ... the factors in the Langlands decomposition of
P(R). Then K ∩MP is a maximal compact subgroup of
P(R) and its image KL in L(R) is a maximal compact
subgroup of L(R). Using this it is clear that fP is KL-finite,
of type specified by the πi .

(II) The hard part is proving that fP is Z (l)-finite, of type
specified by J. The same argument as in the construction of
the Harish-Chandra isomorphism yields a homomorphism

ϕl : Z (g)→ Z (l)

such that D − ϕl(D) ∈ U(g)n for D ∈ Z (g).
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specified by J. The same argument as in the construction of
the Harish-Chandra isomorphism yields a homomorphism

ϕl : Z (g)→ Z (l)

such that D − ϕl(D) ∈ U(g)n for D ∈ Z (g).



The proof of the finiteness theorem: the finale

(I) Since fP is left N(R)-invariant, it is killed by n and thus
ϕl(J)Z (l) kills fP . It suffices to show that this ideal has finite
codimension in Z (l) and for this it suffices to show that ϕl is
finite. Again, passing to graded pieces it suffices to check
that S(g)G → S(l)L is finite. With the usual identification
g ' g∗, this is just the restriction map. The result follows
then easily from the Chevalley restriction theorem.


